

EMC TEST REPORT

Product: Fiber Optic Fusion Splicer

Trade mark : F2H
Model/Type reference : GS60
Serial Model : GS40

Ratings : Input: AC 100V~240V;50/60Hz;

1.5A; 330W

Output: DC 15V;4.5A;68W

Report Number : EED39M00029902

Date of Issue : Oct 27, 2020 Regulations : See below

Test Standards	Results
☑ EN 61326-1:2013☑ EN 61000-3-2: 2014☑ EN 61000-3-3:2013/A1:2019	PASS PASS PASS

Prepared for:

Shanghai Grandway Telecom Tech. Co., Ltd. 6F, Xin'an Building No.99 Tian Zhou Road, Shanghai China

Centre Testing International (Suzhou) CO., LTD.

Building 18, Zhihui New Town Ecological Industrial Park, No. 1206,

Jinyang East Road, Larjia Town, Kunshan, Jiangsu, China

TEL: +86-0512-5015 8288

检验检测专用草 Inspection & Testing Services

Compiled by:

Reviewed by:

Jony . q

Approved by:

lily . Wang

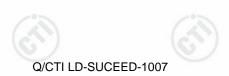
Date of Issue:

Oct 27, 2020

Check No.: 3915507859

Q/CTI LD-SUCEED-1007

Version 1.0


Page 1 of 41

Modification Record

No.	Last Report No.	Modification Description		
1 (3)	EED39M00029902	First report		
All test date come from the report of EED39M00029901				

Version 1.0

TABLE OF CONTENTS

1.		ERAL INFORMATION	
2.		SUMMARY	
3.		SUREMENT UNCERTAINTY	
4.	PROI	DUCT INFORMATION AND TEST SETUP	6
	4.1	PRODUCT INFORMATION	6
	4.2	TEST SETUP CONFIGURATION	7
	4.3	DECISION OF FINAL TEST MODE	7
	4.4	SUPPORT EQUIPMENT	7
5.	FACI	LITIES AND ACCREDITATIONS	7
	5.1	TEST FACILITY	7
	5.2	TEST EQUIPMENT LIST	8
	5.3	LABORATORY ACCREDITATIONS AND LISTINGS	10
6.	CONI	DUCTED EMISSION	11
	6.1	LIMITS	
	6.2	BLOCK DIAGRAM OF TEST SETUP	
	6.3	Test PROCEDURE	
	6.4	GRAPHS AND DATA	12
7.		ATED EMISSION	
	7.1	LIMITS	
	7.2	BLOCK DIAGRAM OF TEST SETUP	
	7.3	TEST PROCEDURE	14
	7.4	GRAPHS AND DATA	
8.	HARI	MONIC CURRENT EMISSION	
	8.1	LIMITS	
	8.2	BLOCK DIAGRAM OF TEST SETUP	
	8.3	TEST PROCEDURE	
	8.4	TEST RESULTS	
9.	-	AGE FLUCTUATIONS & FLICKER TEST	
.	9.1	LIMITS	
	9.2	BLOCK DIAGRAM OF TEST SETUP	
		TEST PROCEDURE	
		TEST RESULTS	
10.		JNITY TEST	
11.		CTROSTATIC DISCHARGE IMMUNITY	
•••	11.1	TEST SPECIFICATION	
	11.2	BLOCK DIAGRAM OF TEST SETUP	
	11.3	TEST PROCEDURE	
	11.4	RESULTS & PERFORMANCE	
12.		O-FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY	
	12.1	TEST SPECIFICATION	_
		BLOCK DIAGRAM OF TEST SETUP	
		TEST PROCEDURE	
	12.4		
13.		CTRICAL FAST TRANSIENTS/BURST IMMUNITY	
	13.1	TEST SPECIFICATION	
	13.2	BLOCK DIAGRAM OF TEST SETUP	
	13.3		
	. 5.5		/

Repo	rt No. : EEI	D39M00029902	
	13.4	RESULTS & PERFORMANCE	27
14.	SURG	GES IMMUNITY	28
		TEST SPECIFICATION	28
	14.2	BLOCK DIAGRAM OF TEST SETUP	28
	14.3	TEST PROCEDURE	28
	14.4	RESULTS & PERFORMANCE	28
15 .		DUCTED DISTURBANCES INDUCED BY RADIO-FREQUENCY FIELDS	
	IMMU	NITY	
	15.1	TEST SPECIFICATION	29
	15.2	BLOCK DIAGRAM OF TEST SETUP	29
	15.3	TEST PROCEDURE	29
	15.4	RESULTS & PERFORMANCE	29
16.	VOLT	AGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS	
	IMMU	NITY	30
	16.1	TEST SPECIFICATION	30
	16.2	BLOCK DIAGRAM OF TEST SETUP	30
	16.3	TEST PROCEDURE	30
	16.4	RESULTS & PERFORMANCE	30
APP	ENDIX 1	PHOTOGRAPHS OF TEST SETUP	31
APP	ENDIX 2	PHOTOGRAPHS OF PRODUCT	36

1. GENERAL INFORMATION

Applicant: Shanghai Grandway Telecom Tech. Co., Ltd.

6F, Xin'an Building No.99 Tian Zhou Road, Shanghai China

Manufacturer: Shanghai Grandway Telecom Tech. Co., Ltd.

6F, Xin'an Building No.99 Tian Zhou Road, Shanghai China/

Zhejiang Grandway Telecom Tech. Co., Ltd

6 Building, No. 8 Haining Avenue, Haining , Haining City, Zhejiang

Province

EMC Directive: 2014/30/EU

Product: Fiber Optic Fusion Splicer

Trade mark: F2H

Model/Type reference: GS60

Serial Model: GS40

Report Number: EED39M00029902

Sample Received Date: Aug 20,2020

Sample tested Date: Oct 13,2020 to Oct 19,2020

The tested sample(s) and the sample information are provided by the client.

2. TEST SUMMARY

The Product has been tested according to the following specifications:

EMISSION			
Standard	Test Item	Test	
CISPR 11	Conducted emission	Yes	
CISPR 11	Radiated emission	Yes	
EN 61000-3-2	Harmonic current emission	Yes	
EN 61000-3-3	Voltage fluctuations & flicker	Yes	

IMMUNITY (EN 61326-1:2013)			
Standard	Test Item	Test	
IEC 61000-4-2	Electrostatic discharge immunity	Yes	
IEC 61000-4-3	Radio-frequency electromagnetic field immunity	Yes	
IEC 61000-4-4	Electrical fast transient/burst immunity	Yes	
IEC 61000-4-5	Surges immunity	Yes	
IEC 61000-4-6	Conducted disturbances induced by radio-frequency fields Immunity	Yes	
IEC 61000-4-8	Power-frequency magnetic field immunity	N/A ¹	
IEC 61000-4-11	Voltage dips, short interruptions and voltage variations immunity	Yes	

Notes:1. The Product doesn't contain any device susceptible to magnetic fields.

MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted emission (Power Ports)	+/- 3.1188
Radiated disturbance (30MHz to 1GHz)	+/- 4.4805

PRODUCT INFORMATION AND TEST SETUP

4.1 PRODUCT INFORMAT	ION
Ratings:	Input: AC 100V~240V;50/60Hz;
	1.5A; 330W Output: DC 15V;4.5A;68W
The highest frequency o the internal sources of the	F oxtimes I less than 108 MHz, the measurement shall only be made
EUT is (less than 108 MHz MHz:	 between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.
	 between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.
Adapter information:	Model: TAA0651500450M3 Input: AC 100~240V;50/60Hz;1.5A Output: DC 15V;4500mA
Model difference:	The models of the products are GS60 and GS40, The test model is GS60. The specific differences are as follows.

Project name	GS60	GS40
Motor number	6	4
Weight	1739(Don't take the battery)	1629(Don't take the battery)
Structure	same	same
Circuitous philosophy	same	same
PCB Layout	same	same
Key components	same	same
Volume	same	same
Colour	same	same
Power	same	same

Q/CTI LD-SUCEED-1007 Version 1.0 Page 6 of 41

4.2 TEST SETUP CONFIGURATION

See test photographs attached in Appendix 1 for the actual connections between Product and support equipment.

4.3 DECISION OF FINAL TEST MODE

 The EUT was tested together with the above additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

The following test mode(s) were scanned during the preliminary test:

Pre Test Mode			
Emission	Conducted Emission	Mode 1: Normal Operation	
	Radiated Emission	Mode 1: Normal Operation	

2. After the preliminary scan, the following test mode was found to produce the final emission level.

Final Test Mode			
Emission	Conducted Emission	Mode 1: Normal Operation	
Emission	Radiated Emission	Mode 1: Normal Operation	

Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

4.4 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	Data Cable	Power Cord
1.	digital multimeter	//	17B+	47224235WS	9),	1
2.	Load	/	/	/	/	/

Notes

- 1. All the equipment/cables were placed in the worst-case configuration to Monitoringimize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5. FACILITIES AND ACCREDITATIONS

5.1 TEST FACILITY

All test facilities used to collect the test data are located at Building 18, Zhihui New Town Ecological Industrial Park, No. 1206, Jinyang East Road, Lujia Town, Kunshan, Jiangsu, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4, CISPR 16-1-1 and other equivalent standards.

5.2 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipments used at CTI for testing.

The calibrations of the Monitoring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the Monitoring instrument.

Equipment used during the tests:

	Conducted emission Test										
Equipment Type Manufacturer Model Number Serial Calibration Date											
Receiver	Receiver R&S		102043	2019-12-11	2020-12-10						
LISN	R&S	ENV4200 ENV216	100325 102058	2019-12-11	2020-12-10 2020-12-10						
LISN	R&S			2019-12-11							
ISN	ISN R&S		100255	2019-12-11	2020-12-10						
ISN R&S		ENY81-CA6	101744	2019-12-11	2020-12-10						

	Radiated emission Test									
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Date	Calibration Due					
3M Chamber	RIKEN	9.25(L)m*6.25(W) m*6.45(H)m	AC-K	2019-09-07	2022-09-06					
Receiver	R&S	ESU8	100537	2019-12-11	2020-12-10					
Spectrum analyzer	R&S	FSV40	101185	2019-12-11	2020-12-10					
Microwave Preamplifier	R&S	SCU-08	100748	2019-12-11	2020-12-10					
Microwave Preamplifier	R&S	&S SCU-18D		2019-12-11	2020-12-10					
Antenna (30MHz~1GHz)	TESEQ	CBL6112D	53439	2019-12-03	2020-12-02					
Antenna (1GHz~18GHz)	Antenna		102524	2019-12-16	2020-12-15					

Harmonic / Flicker Test (EN 61000-3-2) / (EN 61000-3-3)											
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Date	Calibration Due						
Harmonic & Flicker System	EM-TEST	DPA 503N & AIF 503N32.1	P1545166605 & P1613178045	2019-12-11	2020-12-10						
Muitifunction AC/DC Power Source	EM-TEST	NetWave 30-400	P1613178144	2019-12-11	2020-12-10						

Q/CTI LD-SUCEED-1007 Version 1.0 Page 8 of 41

Electrostatic discharge Test (IEC 61000-4-2)								
Equipment Type	Manufacturer	Serial Number	Calibration Date	Calibration Due				
ESD Simulator	Noiseken	ESS-B3011A	ESS1940818	2019-12-13	2020-12-12			

Rad	io-frequency elect	romagnetic field Im	nmunity Test (IE	EC 61000-4-3)		
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Date	Calibration Due	
Radiated immunity test system	TESEQ	ITS 6006	77394	2019-12-6	2020-12-5	
Stacked double LogPer. Antenna	Schwarzbeck	STLP 9129	00131	NCR	NCR	
Power Amplifier (80MHz~1GHz)	TESEQ	CBA 1G-600B	T2491-0819	2019-12-4	2020-12-3	
Power Amplifier (1GHz~6GHz)	MILMEGA	AS0860B-50/50	1087034	2019-12-5	2020-12-4	
Power Meter	TESEQ	TESEQ PMU 6006		2019-12-5	2020-12-4	
Power Meter	TESEQ	PMU 6006	77688	2019-12-5	2020-12-4	

	Electrical F	ast Transients Tes	st (IEC 61000-4-4	l)		
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Date	Calibration Due	
Compact Generator	EM-TEST	UCS500N7	P1608172945	2019-12-11	2020-12-10	
Three phase coupling network	EM-TEST	CNI503B7	P1626181212	2019-12-11	2020-12-10	
Capacitive Clamp	EM-TEST	HFK	P1620179963	2019-12-11	2020-12-10	
Coupling/ decoupling network	EM-TEST	CNI508N2	P1618179278	2019-12-11	2020-12-10	
Mechanical auto voltage regulator	EM-TEST	MV2616	P1532162313	2019-12-11	2020-12-10	

Surges Test (IEC 61000-4-5)									
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Date	Calibration Due 2020-12-10				
Compact Generator	EM-TEST	UCS500N7	P1608172945	2019-12-11					
Coupling/decoupl ing network	EM-TEST	CNI503B7	P1626181212	2019-12-11	2020-12-10				
Coupling/decoupl ing network	EM-TEST	CNV504N2	P1613178139 P1612177946	2019-12-11	2020-12-10				
Coupling/decoupl ing network	EM-TEST	CNV504T5		2019-12-11					
Coupling/decoupl ing network	EM-TEST	CNI508N2	P1618179278	2019-12-11	2020-12-10				
Motorized Variac	EM-TEST	MV2616	P1532162313	2019-12-11	2020-12-10				

Q/CTI LD-SUCEED-1007 Version 1.0 Page 9 of 41

Radio-frequency continuous conducted Immunity Test (IEC 61000-4-6)									
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Date	Calibration Due				
Signal generator	TESEQ	NSG 4070C-35	54406	2019-12-2	2020-12-3				
CDN	FCC	FCC-801-M2/M3-16A	170209 2019-12-1		2020-12-10				
CDN	FCC	FCC-801-M5-32A	170212	2019-12-11	2020-12-10				
Eight-wire communication line coupled de-coupling network	TESEQ	T800	51992	2020-1-2	2021-1-1				
Electromagnetic injection clamp	FCC	F-203I-A-32mm	192109	2020-1-2	2021-1-1				

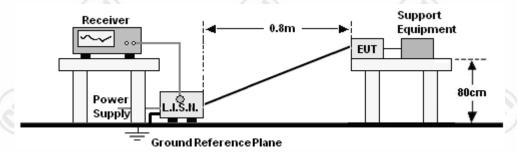
	Voltage dips and interruptions Test (IEC 61000-4-11)										
Equipment Type	Manufacturer	Model Number	lel Number Serial Number		Calibration Due						
Harmonic & Flicker System	EM-TEST	DPA 503N & AIF 503N32.1	P15451666 05& P16131780 45	2019-12-11	2020-12-10						
Muitifunction AC/DC Power Source	EM-TEST	NetWave 30-400	P16131781 44	2019-12-11	2020-12-10						

5.3 LABORATORY ACCREDITATIONS AND LISTINGS

The Monitoring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

Q/CTI LD-SUCEED-1007 Version 1.0 Page 10 of 41

6. CONDUCTED EMISSION


6.1 LIMITS

Limits for class A Group 1 Equipment

	Limits o	iΒ(μV)
Frequency range (MHz)	Rated input pow	ver of ≤ 20 kVA
, ,	Quasi-peak	Average
0.15 to 0.50	79	66
0.50 to 5	73	60
5 to 30	73	60

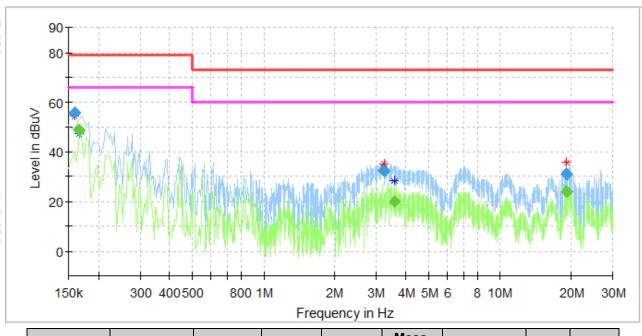
Note: 1. The lower limit shall apply at the transition frequencies.

6.2 BLOCK DIAGRAM OF TEST SETUP

6.3 Test PROCEDURE

- a The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

Report No.: EED39M00029902


6.4 GRAPHS AND DATA

Product: Fiber Optic Fusion Splicer

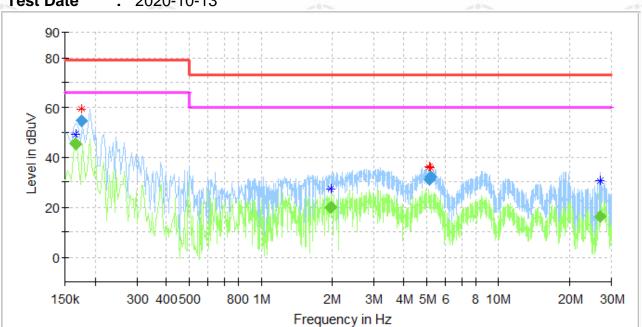
Power : AC 230V/50Hz
Mode : Mode 1
Phase : L1

Test Date : 2020-10-13

Model/Type reference: GS60Temperature: $24.1^{\circ}C$ Humidity: 50.2%Press: 102.3kPa

	Frequency (MHz)	QuasiPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
	0.158965	55.81		79.00	23.19	1000.0	9.000	L1	9.5
	0.166000	(48.66	66.00	17.34	1000.0	9.000	L1	9.5
/	3.240972	32.21		73.00	40.79	1000.0	9.000	L1	10.2
	3.590000		19.86	60.00	40.14	1000.0	9.000	L1	10.1
	19.162000		23.79	60.00	36.21	1000.0	9.000	L1	10.4
	19.165432	30.77	7'30	73.00	42.23	1000.0	9.000	L1	10.4

Q/CTI LD-SUCEED-1007 Version 1.0 Page 12 of 41


Product: Fiber Optic Fusion Splicer

Power : AC 230V/50Hz Mode : Mode 1

Phase: N

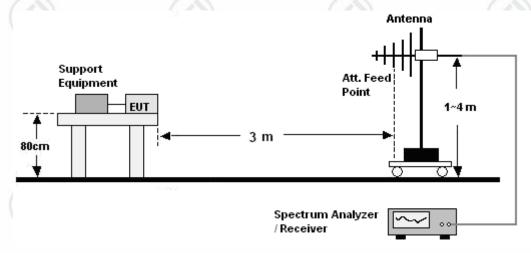
Test Date : 2020-10-13

Model/Type reference: GS60Temperature: 24.1° CHumidity: 50.2%Press: 102.3kPa

Frequency (MHz)	QuasiPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.166000		45.35	66.00	20.65	1000.0	9.000	N	9.6
0.174843	54.65		79.00	24.35	1000.0	9.000	N	9.6
1.974000		19.90	60.00	40.10	1000.0	9.000	N	9.8
5.143718	30.91		73.00	42.09	1000.0	9.000	N	9.9
5.171706	31.67		73.00	41.33	1000.0	9.000	N	9.9
26.666000		15.85	60.00	44.15	1000.0	9.000	N	10.0

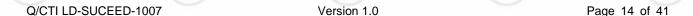
Q/CTI LD-SUCEED-1007 Version 1.0 Page 13 of 41

7. RADIATED EMISSION


7.1 LIMITS

Limits for Group 1 class A Equipment

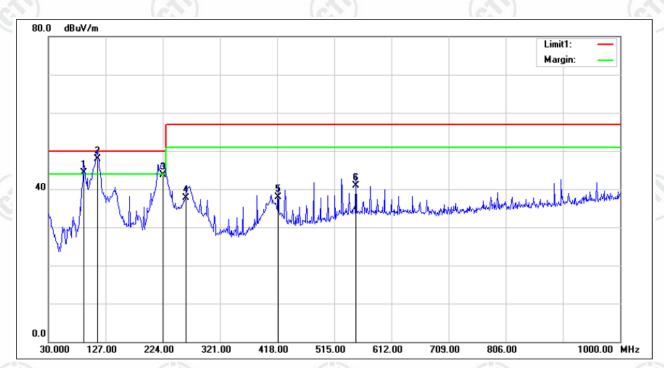
Frequency (MHz)	Quasi-peak limits at 3m dB(μV/m)
30-230	50
230-1000	57

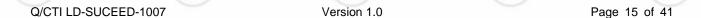

Note: The lower limit shall apply at the transition frequencies.

7.2 BLOCK DIAGRAM OF TEST SETUP

7.3 TEST PROCEDURE

- a The Product was placed on the non-conductive turntable 0.8 m above the ground at a chamber.
- b Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

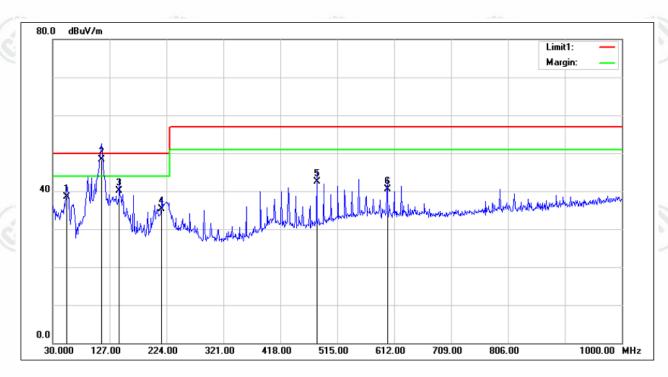



7.4 GRAPHS AND DATA

: Fiber Optic Fusion Splicer Model/Type reference **Product GS60 Temperature** 23.9℃ **Power** AC 230V/50Hz Mode Mode 1 **Humidity** 50% **Polarization Press** 102.6kPa Horizontal

Test Date : 2020-10-19

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
4	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	90.1400	34.73	9.61	44.34	50.00	-5.66	200	9	QP
2	113.2100	36.32	11.51	47.83	50.00	-2.17	200	234	QP
3	224.9700	32.74	10.99	43.73	50.00	-6.27	100	97	QP
4	263.7700	25.05	12.72	37.77	57.00	-19.23	100	268	QP
5	419.9400	20.85	17.14	37.99	57.00	-19.01	200	138	QP
6	551.8600	20.57	20.37	40.94	57.00	-16.06	200	360	QP


Product: Fiber Optic Fusion Splicer

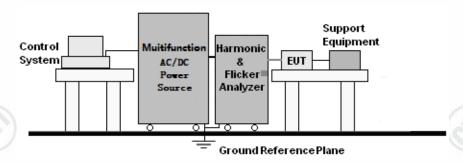
Power : AC 230V/50Hz

Mode : Mode 1
Polarization : Vertical
Test Date : 2020-10-19

Model/Type reference: GS60Temperature: 23.9° CHumidity: 50%

Press : 102.6kPa

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
21	54.2500	30.83	7.72	38.55	50.00	-11.45	100	233	QP
2	113.9800	36.85	11.50	48.35	50.00	-1.65	100	92	QP
3	143.4900	28.73	11.39	40.12	50.00	-9.88	100	360	QP
4	215.2700	24.88	10.48	35.36	50.00	-14.64	100	156	QP
5	480.0800	24.43	18.14	42.57	57.00	-14.43	200	360	QP
6	600.3600	20.62	19.84	40.46	57.00	-16.54	100	66	QP



8. HARMONIC CURRENT EMISSION

8.1 LIMITS

Please refer to EN 61000-3-2:2014 Clause 7.

8.2 BLOCK DIAGRAM OF TEST SETUP

8.3 TEST PROCEDURE

- a The Product was placed on the top of a non-conductive table above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- b The correspondent test program of test instrument to measure the current harmonics emanated from Product was chosen. The measure time shall be not less than the time necessary for the Product to be exercised.

Report No.: EED39M00029902 **8.4 TEST RESULTS**

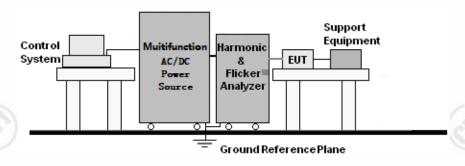
: Fiber Optic Fusion Splicer Model/Type reference **GS60 Product Temperature** AC 230V/50Hz 24.1°C **Power** Humidity Mode 1 48.2% Mode **Test Date** 2020-10-13 **Press** 102.3kPa

Pass.

4 <i>verag</i>	e harmonic cu	rrent results		
Hn	leff [A]	% of Limit	Limit [A]	Result
1	207.562E-3		(3)	
2	529.474E-6			PASS
3	200.951E-3	8.737	2.30	PASS
4	748.319E-6			PASS
5	195.727E-3	17.169	1.14	PASS
6	1.041E-3			PASS
7	187.978E-3	24.413	770.00E-3	PASS
8	1.237E-3	(6.2)	(6.7	PASS
9	178.126E-3	44.532	400.00E-3	PASS
10	1.511E-3			PASS
11	166.495E-3	50.453	330.00E-3	PASS
12	1.606E-3	10~	105	PASS
13	153.596E-3	73.141	210.00E-3	PASS
14	1.821E-3	37	(6,2)	PASS
15	139.747E-3	93.165	150.00E-3	PASS
16	1.856E-3			PASS
17	125.484E-3	94.812	132.35E-3	PASS
18	2.018E-3	200	797	PASS
19	111.427E-3	94.095	118.42E-3	PASS
20	2.038E-3	(6.)	(6.)	PASS
21	97.453E-3	60.639	160.71E-3	PASS
22	2.044E-3			PASS
23	84.706E-3	57.723	146.74E-3	PASS
24	2.203E-3	200	· .	PASS
25	72.888E-3	53.991	135.00E-3	PASS
26	2.108E-3	3")	(6.)	PASS
27	62.250E-3	49.802	124.99E-3	PASS
28	2.199E-3			PASS
29	53.157E-3	45.673	116.39E-3	PASS
30	2.157E-3	\cdot\(\dagger\)	(*)	PASS
31	45.522E-3	41.813	108.87E-3	PASS
32	2.173E-3			PASS
33	38.875E-3	38.012	102.27E-3	PASS
34	2.052E-3			PASS
35	33.299E-3	34.530	96.44E-3	PASS
36	1.921E-3	12.	/°S	PASS
37	28.227E-3	30.945	91.21E-3	PASS
38	1.871E-3			PASS
39	24.131E-3	27.886	86.53E-3	PASS
40	1.649E-3			PASS

Maxin	num harmonid	current results		
Hn	leff [A]	% of Limit	Limit [A]	Result
1 (208.027E-3		(6.50)	(52)
2	1.057E-3			PASS
3	201.469E-3	5.840	3.45	PASS
4	1.270E-3			PASS
5	196.266E-3	11.478	1.71	PASS
6	1.534E-3			PASS
7	188.578E-3	16.327	1.15	PASS
8	1.720E-3			PASS
9	178.803E-3	29.801	600.00E-3	PASS
10	1.985E-3			PASS
11	167.281E-3	33.794	495.00E-3	PASS
12	2.170E-3			PASS
13	154.481E-3	49.042	315.00E-3	PASS
14	2.450E-3			PASS
15	140.723E-3	62.543	225.00E-3	PASS
16	2.526E-3			PASS
17	126.554E-3	63.747	198.52E-3	PASS
18	2.739E-3		(43)	PASS
19	112.532E-3	63.352	177.63E-3	PASS
20	2.765E-3			PASS
21	98.592E-3	61.348	160.71E-3	PASS
22	2.783E-3			PASS
23	85.814E-3	58.478	146.74E-3	PASS
24	2.920E-3		(3/2)	PASS
25	73.929E-3	54.762	135.00E-3	PASS
26	2.812E-3			PASS
27	63.220E-3	50.578	124.99E-3	PASS
28	2.864E-3			PASS
29	54.051E-3	46.442	116.39E-3	PASS
30	2.803E-3	(-45)	(-<->-/-	PASS
31	46.262E-3	42.493	108.87E-3	PASS
32	2.775E-3			PASS
33	39.489E-3	38.613	102.27E-3	PASS
34	2.596E-3			PASS
35	33.775E-3	35.024	96.44E-3	PASS
36	2.400E-3			PASS
37	28.586E-3	31.339	91.21E-3	PASS
38	2.295E-3			PASS
39	24.390E-3	28.185	86.53E-3	PASS
40	2.057E-3			PASS

Maxin	num harmonic	voltage results		
Hn	Ueff [V]	Ueff [%]	Limit [%]	Result
1 (6	230.76	100.331	(5.7)	(5,2)
2	181.76E-3	0.079	0.2	PASS
3	159.30E-3	0.069	0.9	PASS
4	86.38E-3	0.038	0.2	PASS
5	59.46E-3	0.026	0.4	PASS
6	54.72E-3	0.024	0.2	PASS
7	98.49E-3	0.043	0.3	PASS
8	47.74E-3	0.021	0.2	PASS
9	27.74E-3	0.012	0.2	PASS
10	42.65E-3	0.019	0.2	PASS
11	80.10E-3	0.035	0.1	PASS
12	42.71E-3	0.019	0.1	PASS
13	35.97E-3	0.016	0.1	PASS
14	39.26E-3	0.017	0.1	PASS
15	64.40E-3	0.028	0.1	PASS
16	39.50E-3	0.017	0.1	PASS
17	41.82E-3	0.018	0.1	PASS
18	33.52E-3	0.015	0.1	PASS
19	54.34E-3	0.024	0.1	PASS
20	24.15E-3	0.011	0.1	PASS
21	31.06E-3	0.014	0.1	PASS
22	20.14E-3	0.009	0.1	PASS
23	64.19E-3	0.028	0.1	PASS
24	17.80E-3	0.008	0.1	PASS
25	30.76E-3	0.013	0.1	PASS
26	21.63E-3	0.009	0.1	PASS
27	20.25E-3	0.009	0.1	PASS
28	19.64E-3	0.009	0.1	PASS
29	43.80E-3	0.019	0.1	PASS
30	14.19E-3	0.006	0.1	PASS
31	22.40E-3	0.010	0.1	PASS
32	15.40E-3	0.007	0.1	PASS
33	38.50E-3	0.017	0.1	PASS
34	22.80E-3	0.010	0.1	PASS
35	52.97E-3	0.023	0.1	PASS
36	24.50E-3	0.011	0.1	PASS
37	17.14E-3	0.007	0.1	PASS
38	20.65E-3	0.009	0.1	PASS
39	23.49E-3	0.010	0.1	PASS
40	13.48E-3	0.006	0.1	PASS



9. VOLTAGE FLUCTUATIONS & FLICKER TEST

9.1 LIMITS

Please refer to EN 61000-3-3:2013/A1:2019 Clause 5.

9.2 BLOCK DIAGRAM OF TEST SETUP

9.3 TEST PROCEDURE

- a The Product was placed on the top of a non-conductive table above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- b During the flick test, the measure time shall include that part of whole operation cycle in which the Product produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

9.4 TEST RESULTS

Product: Fiber Optic Fusion SplicerModel/Type reference: GS60Power: AC 230V/50HzTemperature: $24.1^{\circ}C$ Mode: Mode 1Humidity: 48.2° Test Date: 2020-10-13Press: 102.3kPa

Pass.

Maximum Flicker results

(3)	EUT values	Limit	Result
Pst	0.461	1.00	PASS
Plt	0.202	0.65	PASS
dc [%]	0.000	3.30	PASS
dmax [%]	0.196	4.00	PASS
Tmax [s]	0.000	0.50	PASS

Q/CTI LD-SUCEED-1007

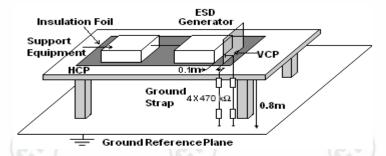
10. IMMUNITY TEST

General Performance Criteria						
Product Standard	EN 61326-1:2013					
CRITERION A	The equipment shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.					
CRITERION B	The equipment shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.					
CRITERION C	Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.					

Version 1.0

Page 22 of 41

11. ELECTROSTATIC DISCHARGE IMMUNITY


11.1 TEST SPECIFICATION

Basic Standard : EN 61326-1 & IEC 61000-4-2

Test Port : Enclosure port
Discharge Impedance : 330 ohm / 150 pF
Discharge Mode : Single Discharge

Discharge Period : one second between each discharge

11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 TEST PROCEDURE

- a Electrostatic discharges were applied only to those points and surfaces of the Product that are accessible to users during normal operation.
- b The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c The time interval between two successive single discharges was at least 1 second.
- d The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the Product.
- e Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f Air discharges were applied with the round discharge tip of the discharge electrode approaching the Product as fast as possible (without causing mechanical damage) to touch the Product. After each discharge, the ESD generator was removed from the Product and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the Product. The ESD generator was positioned vertically at a distance of 0.1 meters from the Product with the discharge electrode touching the HCP.
- h At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the Product were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the Product.

Q/CTI LD-SUCEED-1007

11.4 RESULTS & PERFORMANCE

: Fiber Optic Fusion Splicer Model/Type reference **GS60 Product Temperature** AC 230V/50Hz 21.6℃ **Power** Mode Mode 1 Humidity 48.7% **Test Date** 2020-10-14 **Press** 102.4kPa

Discharge Method	Discharge Position	Voltage (±kV)	No. of Discharge per polarity (Each Point)	Required Level	Performance Criterion
	Indirect Discharge VCP	± 4	25	В	А
Contact Discharge	Indirect Discharge HCP	± 4	25	В	Α
	Conductive Surfaces	± 4	25	В	A
Air Discharge	Slots, Apertures, and Insulating Surfaces	±8	10	В	А

Version 1.0

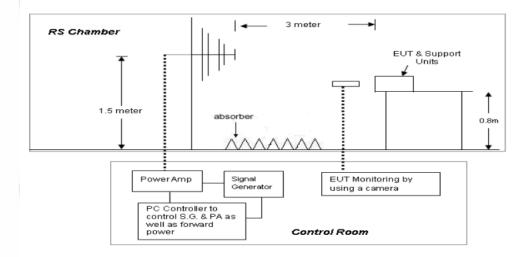
Page 24 of 41

12. RADIO-FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY

12.1 TEST SPECIFICATION

Basic Standard : EN 61326-1 & IEC 61000-4-3

Test Port : Enclosure port


Step Size : 1%

Modulation : 1kHz, 80% AM

Dwell Time : 3 second

Polarization : Horizontal & Vertical

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 TEST PROCEDURE

- a The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3m from the Product.
- b The frequency range is swept from 80MHz to 1000MHz and 1400MHz to 2700MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1%.
- c The test was performed with the Product exposed to both vertically and horizontally polarized fields on each of the four sides.

12.4 RESULTS & PERFORMANCE

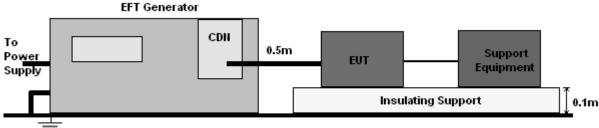
Product : Fiber Optic Fusion Splicer Model/Type reference **GS60 Temperature Power** AC 230V/50Hz 25.2°C Humidity Mode Mode 1 46.1% 102.4kPa **Test Date** 2020-10-14 **Press**

Frequency (MHz)	Position	Field Strength (V/m)	Required Level	Performance Criterion
80 - 1000	Front, Back, Left, Right	10	А	А
1400 - 2000	Front, Back, Left, Right	3	A A	A
2000 - 2700	Front, Back, Left, Right	1	А	А

Q/CTI LD-SUCEED-1007 Version 1.0 Page 26 of 41

13. ELECTRICAL FAST TRANSIENTS/BURST IMMUNITY

13.1 TEST SPECIFICATION


Basic Standard : EN 61326-1 & IEC 61000-4-4

Test Port : Input AC mains power port

Impulse Frequency: 5 kHzImpulse Wave-shape: 5/50 nsBurst Duration: 15 msBurst Period: 300 ms

Test Duration : 1 minute per polarity

13.2 BLOCK DIAGRAM OF TEST SETUP

Ground Reference Plane

13.3 TEST PROCEDURE

- a The Product and support units were located on a non-conductive table above ground reference plane.
- b A 0.5m-long power cord was attached to Product during the test.

13.4 RESULTS & PERFORMANCE

Fiber Optic Fusion Splicer Model/Type reference **GS60 Product** Power AC 230V/50Hz **Temperature** 24.2°C Mode Mode 1 Humidity 48.3% Test Date 2020-10-19 **Press** 102.6kPa

Coupling	Voltage (kV)	Polarity	Required Level	Performance Criterion
L	2	±	В	Α
N	2	±	В	А
PE	2	4	В	A
L+N	2	4	В	Α
L+PE	2	±	В	А
N+PE	2	±	В	A
L+N+PE	2	±	В	A

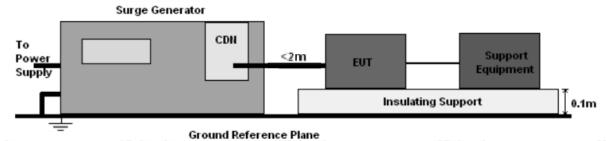
Q/CTI LD-SUCEED-1007 Version 1.0 Page 27 of 41

14. SURGES IMMUNITY

14.1 TEST SPECIFICATION

Basic Standard : EN 61326-1 & IEC 61000-4-5

Test Port : Input AC power port


Wave-Shape : Open Circuit Voltage: 1.2 / 50 us

Phase Angle : 0°, 90°, 180°, 270°

Pulse Repetition Rate : 1 pulse / min.

Test Events: 5 pulses (positive & negative) for each polarity

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST PROCEDURE

- a The surge is to be applied to the Product power supply terminals via the capacitive coupling networking. Decoupling networkings are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave.
- b The power cord between the Product and the coupling/decoupling networkings shall be 2 meters in length (or shorter). Interconnection line between the Product and the coupling/decoupling networkings shall be 2 meters in length (or shorter).

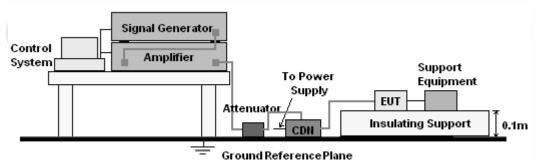
14.4 RESULTS & PERFORMANCE

Product: Fiber Optic Fusion SplicerModel/Type reference: GS60Power: AC 230V/50HzTemperature: 24.2° CMode: Mode 1Humidity: 48.3%Test Date: 2020-10-19Press: 102.6kPa

Coupling Line	Voltage (kV)	Polarity	Required Level	Performance Criterion
L-N	(5)1	(±)	В	Α (5)
L-PE	2	±	В	А
N-PE	2	±	В	A

15. CONDUCTED DISTURBANCES INDUCED BY RADIO-FREQUENCY FIELDS IMMUNITY

15.1 TEST SPECIFICATION


Basic Standard : EN 61326-1 & IEC 61000-4-6

Test Port : Input AC power port

Step Size : 1%

Modulation : 1kHz, 80% AM

Dwell Time : 3 second **15.2 BLOCK DIAGRAM OF TEST SETUP**

15.3 TEST PROCEDURE

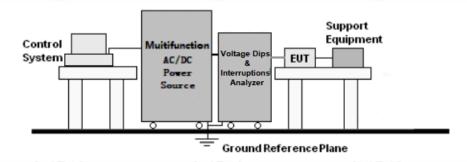
- a The Product and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly.
- b The frequency range is swept from 150 kHz to 80MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c The dwell time at each frequency shall be not less than the time necessary for the Product to be able to respond.

15.4 RESULTS & PERFORMANCE

Fiber Optic Fusion Splicer Model/Type reference **GS60** Product : AC 230V/50Hz **Temperature** 24.2℃ Power Mode Mode 1 **Humidity** 46.2% Test Date : 2020-10-15 **Press** 102.6kPa

Inject Line	Frequency (MHz)	Voltage Level (V)	Required Level	Performance Criterion
AC port	0.15 - 80	3	Α	Α

16. VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS IMMUNITY


16.1 TEST SPECIFICATION

Basic Standard : EN 61326-1 & IEC 61000-4-11

Test Ports : Input AC power port

Phase Angle : 0°

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST PROCEDURE

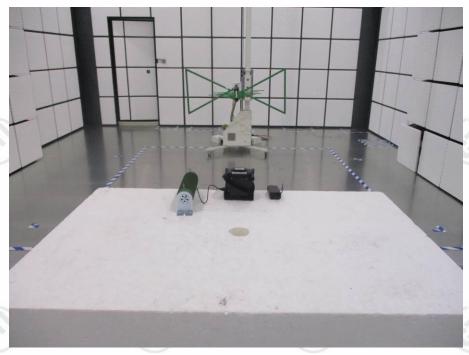
- a The Product and support units were located on a non-conductive table above ground floor.
- b Set the parameter of tests and then perform the test software of test simulator.

16.4 RESULTS & PERFORMANCE

Product: Fiber Optic Fusion SplicerModel/Type reference: GS60Power: AC 230V/50HzTemperature: 24.1 $^{\circ}$ CMode: Mode 1Humidity: 48.2%Test Date: 2020-10-13Press: 102.3kPa

Test Level % UT	Reduction (%)	Cycle	Required Level	Performance criteria
0	100) 1	В	A
40	60	10	С	А
70	30	25	С	Α
0	100	250	c (C)	C

Q/CTI LD-SUCEED-1007 Version 1.0 Page 30 of 41



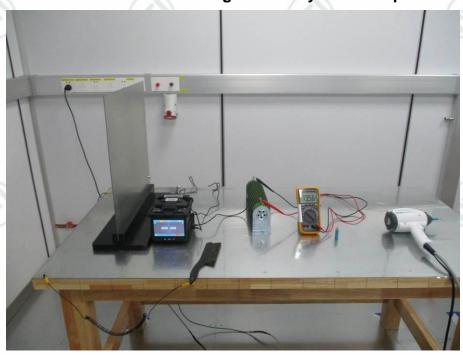
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Conducted Emission Test Setup

Radiated Emission Test Setup

Q/CTI LD-SUCEED-1007 Version 1.0 Page 31 of 41

Harmonic Current Emission Test Setup


Voltage Fluctuations and Flicker Test Setup

Q/CTI LD-SUCEED-1007 Version 1.0 Page 32 of 41

Electrostatic Discharge Immunity Test Setup

Radio-frequency electromagnetic field Immunity Test Setup

Q/CTI LD-SUCEED-1007 Version 1.0 Page 33 of 41

Surges Immunity Test Setup

Q/CTI LD-SUCEED-1007 Version 1.0 Page 34 of 41

Conducted Disturbances Induced By Radio-frequency Fields Immunity Test Setup

Voltage Dips, Short Interruptions And Voltage Variations Immunity Test Setup

Q/CTI LD-SUCEED-1007 Version 1.0 Page 35 of 41

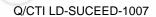

APPENDIX 2 PHOTOGRAPHS OF PRODUCT

View of Product-1

View of Product-2

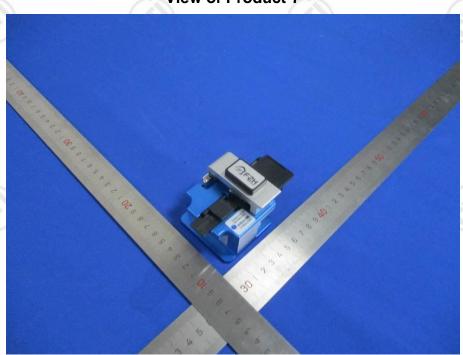
Version 1.0 Page 36 of 41

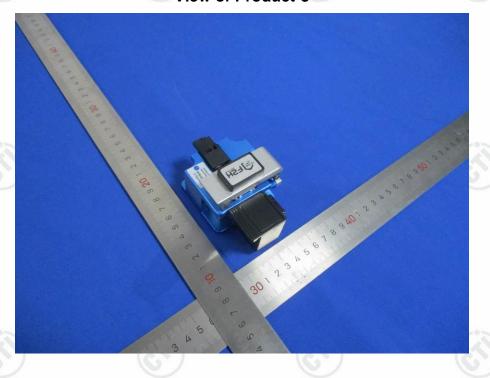
View of Product-4



View of Product-6

Page 38 of 41 Version 1.0





Q/CTI LD-SUCEED-1007

Version 1.0

Page 39 of 41

Q/CTI LD-SUCEED-1007

Version 1.0

Page 40 of 41

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Q/CTI LD-SUCEED-1007

Version 1.0